Material for speakers: Difference between revisions
No edit summary |
|||
(101 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
=Mu2e-II= | |||
Contributed paper for Snowmass22 | |||
<ref name=Byrum2022/>https://arxiv.org/abs/2203.07569 | |||
[https://mu2e-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=41871 Sample slides based on the Snowmass contributed paper] | |||
NUFACT2022 paper | |||
<ref name=Neuffer2023/>https://lss.fnal.gov/archive/2022/conf/fermilab-conf-22-928-ad.pdf | |||
==References== | |||
<references> | |||
<ref name=Byrum2022> Byrum, K. et al., Mu2e-II: Muon to electron conversion with PIP-II, [https://arxiv.org/abs/2203.07569]</ref> | |||
<ref name=Neuffer2023> Neuffer, D. et ai., A Pion-Production Target for Mu2e-II: Design and Prototype, Phys. Sci. Forum 2023 (NUFACT 2022 paper) [https://lss.fnal.gov/archive/2022/conf/fermilab-conf-22-928-ad.pdf]</ref> | |||
</references> | |||
=Mu2e= | =Mu2e= | ||
[https://mu2e.fnal.gov/public/hep/results/index.shtml Mu2e public results and material for speakers] | [https://mu2e.fnal.gov/public/hep/results/index.shtml Mu2e public results and material for speakers] | ||
=Theory= | |||
We measure | |||
<math> | |||
\begin{equation} | |||
R_{\mu e} \equiv \frac{\Gamma(\mu^-N(A,Z)\to e^-N(A,Z)}{\Gamma(\mu^-N(A,Z)\to \nu_\mu N(A,Z-1)^*)}. | |||
\end{equation} | |||
</math> | |||
In the standard model, this is very small. On aluminum it is estimated to be | |||
<math> | |||
\begin{equation} | |||
R(\mu^-\hbox{Al}\to e^- \hbox{Al}) \sim 2\times10^{-52}\frac{\sin^2\theta_{13}}{0.15}. | |||
\end{equation} | |||
</math> | |||
<ref name=Marciano2008/> | |||
<div><ul> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Zscenarios.png|thumb|top|Z dependence of µ → e conversion rates for some | |||
sample scenarios [https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0-TF6_TF0_Heeck-043.pdf].]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Mu2eXspectrum.png|thumb|top|Tail of the electron spectrum for DIOs and for two <math>\mu\to eX</math> scenarios [https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0-TF6_TF0_Heeck-043.pdf].]] </li> | |||
</ul> | |||
==References== | |||
[Following references not cited above: <ref name=Cirigliano2009/> | |||
<ref name=Marciano1977/>] | |||
<references> | |||
<ref name=Marciano2008> Marciano, William J. and Mori, Toshinori and Roney, J. Michael, Charged Lepton Flavor Violation Experiments, Annual Review of Nuclear and Particle Science, 58 (2008) 315-341.</ref> | |||
<ref name=Cirigliano2009>[https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.013002 Vincenzo Cirigliano, Ryuichiro Kitano, Yasuhiro Okada, and Paula Tuzon, Phys. Rev. D 80, 013002 (2009)]</ref> | |||
<ref name=Marciano1977> Marciano, William J. and Sanda, A. I., Reaction <math>\mu^-+\hbox{Nucleus}\rightarrow e^-+\hbox{Nucleus}</math> in Gauge Theories, Phys. Rev. Lett. 38 (1977) 1512-1515.</ref> | |||
</references> | |||
=PIP-II accelerator= | =PIP-II accelerator= | ||
[https://pip2.fnal.gov/ PIP-II public web site] | <div><ul> | ||
<li style="display: inline-block; vertical-align: top;"> [[File:PIP-II Pozdeyev 7 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:PIP-II Pozdeyev 9 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:PIP-II Pozdeyev 10 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:PIP-II Pozdeyev 15 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:PIP-II Pozdeyev 16 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:PIP-II Pozdeyev 17 MP.png|thumb|top]] </li> | |||
</ul> | |||
==References== | |||
<li> [https://pip2.fnal.gov/ PIP-II public web site] | |||
<li> [https://indico.fnal.gov/event/45713/timetable/#20201002.detailed E. Pozdeyev, Rare Processes and Precision Frontier Town Hall (2020)] | |||
=Beamline= | |||
=Production target= | =Production target= | ||
<div><ul> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:ProductionTargetRotatingRodsWcaption-IPAC214MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;">[[File:productionTargetDesignsFixedGranular4MP-IPAC21.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:productionTargetDesignsConveyor4MP-IPAC21.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:ComparisonTable4MP-IPAC21.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:BallDeformation.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:HRScaptioned.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Mu2e-II CERN 052021 VP 6 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Mu2e-II CERN 052021 VP 7 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Mu2e-II CERN 052021 VP 8 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Mu2e-II CERN 052021 VP 9 4MP.png|thumb|top]] </li> | |||
</ul> | |||
==References== | |||
<li> [https://indico.cern.ch/event/1030726/contributions/4370902/attachments/2247841/3812745/Mu2e-II_CERN__052021_VP.pdf] "Pion-production target design for Mu2e-II: status update" 1st Muon Community Meeting (2021) </li> | |||
<li> [https://indico.cern.ch/event/978361/contributions/4146397/attachments/2162387/3648809/MCa__Muon_Collider__14Dec2020_EDMS2455802_v1.pdf] "Early considerations for muon collider targetry at CERN" </li> | |||
=Production solenoid= | |||
=Tracking= | =Tracking= | ||
<div><ul> | <div><ul> | ||
<li style="display: inline-block;"> [[File:TrackerResolutionRequirement.png|thumb|top|Slide illustrating the requirement on track resolution for Mu2e-II compared with Mu2e. | <li style="display: inline-block; vertical-align: top;"> [[File:TrackerResolutionRequirement.png|thumb|800px|top|Slide illustrating the requirement on track resolution for Mu2e-II compared with Mu2e. | ||
Note that the resolution has contributions from several sources - the tacker itself, absorber material, and target material. The blue dashed curve on each plot indicates the | |||
electron spectrum from muon decays in orbit (DIOs). The red curves show the conversion electron spectrum for the | electron spectrum from muon decays in orbit (DIOs). The red curves show the conversion electron spectrum for the | ||
values of <math>R_{\mu e}</math> indicated in the legends.]] </li> | values of <math>R_{\mu e}</math> indicated in the legends. | ||
<li style="display: inline-block;">[[File:AmbroseCPAD Mu2e Tracker 184MP.jpg|thumb|top]] </li> | In more detail: (left) Simulation of the energy distributions of electrons from conversion and the high energy tail of DIO's, for Mu2e. The assumption is <math>6.7\times 10^{17}</math> stopped muons and a conversion electron (CE) rate of <math>10^{-16}</math>. The electron energies are broadened by energy straggling in the stopping target and the Inner Proton Absorber (IPA), and by energy straggling and multiple scattering in the Tracker; | ||
<li style="display: inline-block;"> [[File:AmbroseCPAD Mu2e Tracker | (center) Simulation of the energy distributions of electrons from conversion and the high energy tail of DIO's, for Mu2e-II. The assumption is <math>10^{19}</math> stopped muons and a CE rate of <math>10^{-17}</math>. The energy resolution is assumed to be the same as that expected for Mu2e. There is now a substantial overlap between the DIO background and the CE signal; | ||
(right) Simulation of the energy distributions of electrons from conversion and the high energy tail of DIO's, for Mu2e-II. The assumption is <math>10^{19}</math> stopped muons and a CE rate of <math>10^{-17}</math>. The energy resolution is assumed to be the two times better than Mu2e (a goal of Mu2e-II). | |||
There is now much less overlap between the DIO background and the CE signal, compared to the center plot. | |||
]] </li> | |||
<li style="display: inline-block; vertical-align: top;">[[File:AmbroseCPAD Mu2e Tracker 184MP.jpg|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:AmbroseCPAD Mu2e Tracker 19.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:AmbroseCPAD Mu2e Tracker 20.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:DPF2021 Design and studies for the Mu2e-II tracker 8 4MP.png|thumb|top]] | |||
<li style="display: inline-block; vertical-align: top;"> [[File:DPF2021 Design and studies for the Mu2e-II tracker 9 4MP.png|thumb|top]] | |||
<li style="display: inline-block; vertical-align: top;"> [[File:DPF2021 Design and studies for the Mu2e-II tracker 10 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:DPF2021 Design and studies for the Mu2e-II tracker 11 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:DPF2021 Design and studies for the Mu2e-II tracker 12 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:DPF2021 Design and studies for the Mu2e-II tracker 13 4MP.png|thumb|top]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:DPF2021 Design and studies for the Mu2e-II tracker 14 4MP.png|thumb|top]] </li> | |||
</ul> | |||
==References== | |||
<li> "Design and studies for the Mu2e-II tracker", DPF 2021 [https://indico.cern.ch/event/1034469/contributions/4431745/] </li> | |||
<li> COMET tracker (2020 NIM) [https://www.sciencedirect.com/science/article/abs/pii/S0168900219312446] </li> | |||
<li> COMET tracker (2016 slides) [https://indico.cern.ch/event/391665/contributions/1827226/attachments/1229733/1802100/COMET_Straw.pdf] </li> | |||
=Calorimeter= | =Calorimeter= | ||
<div><ul> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:yttriumDoping.png|thumb|top|Effect of yttrium doping on suppressing the slow component in BaF<math>_2</math>]] </li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Hitlin_CPAD_210318-_Page_05MP.png|thumb|top]]</li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Hitlin CPAD 210318 Page 26 4MP.png|thumb|top]]</li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Hitlin CPAD 210318 Page 274MP.png|thumb|top]]</li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Hitlin CPAD 210318 Page 28 4MP.png|thumb|top]]</li> | |||
</ul> | |||
=Cosmic Ray Veto= | =Cosmic Ray Veto= | ||
The Mu2e-II Cosmic Ray Veto will need to cope with roughly a factor 3 higher instantaneous rates from accelerator compared with Mu2e as well as a factor of three | |||
higher live time (i.e., cosmic rays), because of the higher duty factor for Mu2e-II compared with Mu2e. | |||
<div><ul> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Crv seminar dpf 2021 16 4MP.png|thumb|top]]</li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Crv seminar dpf 2021 17 4MP.png|thumb|top]]</li> | |||
<li style="display: inline-block; vertical-align: top;"> [[File:Crv seminar dpf 2021 18 4MP.png|thumb|top]]</li> | |||
</ul> | |||
==References== | |||
<li> [https://indico.cern.ch/event/1034469/contributions/4431744/] "A Novel Scintillator Detector for the Mu2e-II Experiment and a Muon Tomography Probe of the Interior of the Great Pyramid" </li> | |||
=Trigger and Data Acquisition (TDAQ)= | |||
=Sensitivity= | |||
=References= | |||
<li>[https://arxiv.org/pdf/2110.07093.pdf] Muon to positron conversion (2021)</li> | |||
<li>[https://arxiv.org/pdf/2107.02073.pdf] Muon-ion collider for BNL (2021)</li> | |||
<li>[https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0_Frank_Porter-106.pdf] Mu2e-II Snowmass 22 Letter of Interest (2020)</li> | |||
<li>[https://indico.cern.ch/event/1030726/timetable/#20210520.detailed] 1st muon community meeting (CERN), 20-21 May 2020</li> | |||
<li>[https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0-TF6_TF0_Heeck-043.pdf] Mu2e-II theory Snowmass 22 Letter of Interest (2020)</li> | |||
<li>[https://academic.oup.com/ptep/article/2020/3/033C01/5805094] COMET Phase-I TDR (2020)</li> | |||
<li>[https://arxiv.org/pdf/1901.06150.pdf] Muon colliders (2019)</li> | |||
<li>[https://arxiv.org/ftp/arxiv/papers/1802/1802.02599.pdf] Mu2e-II Expression of Interest (2018) </li> | |||
<li>[https://www.annualreviews.org/doi/10.1146/annurev.nucl.58.110707.171126] Charged Lepton Flavor Violation Experiments (2008)</li> |
Latest revision as of 21:12, 26 September 2023
Mu2e-II
Contributed paper for Snowmass22
[1]https://arxiv.org/abs/2203.07569
Sample slides based on the Snowmass contributed paper
NUFACT2022 paper
[2]https://lss.fnal.gov/archive/2022/conf/fermilab-conf-22-928-ad.pdf
References
Mu2e
Mu2e public results and material for speakers
Theory
We measure
[math]\displaystyle{ \begin{equation} R_{\mu e} \equiv \frac{\Gamma(\mu^-N(A,Z)\to e^-N(A,Z)}{\Gamma(\mu^-N(A,Z)\to \nu_\mu N(A,Z-1)^*)}. \end{equation} }[/math] In the standard model, this is very small. On aluminum it is estimated to be [math]\displaystyle{ \begin{equation} R(\mu^-\hbox{Al}\to e^- \hbox{Al}) \sim 2\times10^{-52}\frac{\sin^2\theta_{13}}{0.15}. \end{equation} }[/math] [1]
References
[Following references not cited above: [2] [3]]
- ↑ Marciano, William J. and Mori, Toshinori and Roney, J. Michael, Charged Lepton Flavor Violation Experiments, Annual Review of Nuclear and Particle Science, 58 (2008) 315-341.
- ↑ Vincenzo Cirigliano, Ryuichiro Kitano, Yasuhiro Okada, and Paula Tuzon, Phys. Rev. D 80, 013002 (2009)
- ↑ Marciano, William J. and Sanda, A. I., Reaction [math]\displaystyle{ \mu^-+\hbox{Nucleus}\rightarrow e^-+\hbox{Nucleus} }[/math] in Gauge Theories, Phys. Rev. Lett. 38 (1977) 1512-1515.
PIP-II accelerator
References
Beamline
Production target
Production solenoid
Tracking
References
Calorimeter
Cosmic Ray Veto
The Mu2e-II Cosmic Ray Veto will need to cope with roughly a factor 3 higher instantaneous rates from accelerator compared with Mu2e as well as a factor of three higher live time (i.e., cosmic rays), because of the higher duty factor for Mu2e-II compared with Mu2e.