Material for speakers: Difference between revisions

From New MediaWiki Site
Jump to navigation Jump to search
No edit summary
No edit summary
 
(21 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Mu2e-II=
Contributed paper for Snowmass22
<ref name=Byrum2022/>https://arxiv.org/abs/2203.07569
[https://mu2e-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=41871 Sample slides based on the Snowmass contributed paper]
NUFACT2022 paper
<ref name=Neuffer2023/>https://lss.fnal.gov/archive/2022/conf/fermilab-conf-22-928-ad.pdf
==References==
<references>
<ref name=Byrum2022> Byrum, K. et al., Mu2e-II: Muon to electron conversion with PIP-II, [https://arxiv.org/abs/2203.07569]</ref>
<ref name=Neuffer2023> Neuffer, D. et ai., A Pion-Production Target for Mu2e-II: Design and Prototype, Phys. Sci. Forum 2023 (NUFACT 2022 paper) [https://lss.fnal.gov/archive/2022/conf/fermilab-conf-22-928-ad.pdf]</ref>
</references>
=Mu2e=
=Mu2e=


[https://mu2e.fnal.gov/public/hep/results/index.shtml Mu2e public results and material for speakers]
[https://mu2e.fnal.gov/public/hep/results/index.shtml Mu2e public results and material for speakers]


=Theory=
=Theory=


We measure
<math>
\begin{equation}
R_{\mu e} \equiv \frac{\Gamma(\mu^-N(A,Z)\to e^-N(A,Z)}{\Gamma(\mu^-N(A,Z)\to \nu_\mu N(A,Z-1)^*)}.
\end{equation}
</math>
In the standard model, this is very small. On aluminum it is estimated to be
<math>
<math>
\begin{equation}
\begin{equation}
  R_{\mu e} \equiv \frac{\Gamma(\mu^-N(A,Z)\to e^-N(A,Z)}{\Gamma(\mu^-N(A,Z)\to \nu_\mu N(A,Z-1)^*)} = 3\times 10^{-17}
  R(\mu^-\hbox{Al}\to e^- \hbox{Al}) \sim  2\times10^{-52}\frac{\sin^2\theta_{13}}{0.15}.
  \end{equation}
  \end{equation}
</math>
</math>
<ref name=Marciano2008/>


<div><ul>  
<div><ul>  
Line 17: Line 46:
</ul>
</ul>


=References=
==References==
 
[Following references not cited above: <ref name=Cirigliano2009/>
<ref name=Marciano1977/>]
 
<references>
<ref name=Marciano2008> Marciano, William J. and Mori, Toshinori and Roney, J. Michael, Charged Lepton Flavor Violation Experiments, Annual Review of Nuclear and Particle Science, 58 (2008) 315-341.</ref>
<ref name=Cirigliano2009>[https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.013002 Vincenzo Cirigliano, Ryuichiro Kitano, Yasuhiro Okada, and Paula Tuzon, Phys. Rev. D 80, 013002 (2009)]</ref>
 
<ref name=Marciano1977> Marciano, William J. and  Sanda, A. I., Reaction <math>\mu^-+\hbox{Nucleus}\rightarrow e^-+\hbox{Nucleus}</math> in Gauge Theories, Phys. Rev. Lett. 38 (1977) 1512-1515.</ref>


<li> [https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.013002 Vincenzo Cirigliano, Ryuichiro Kitano, Yasuhiro Okada, and Paula Tuzon, Phys. Rev. D 80, 013002 (2009)]
</references>


=PIP-II accelerator=
=PIP-II accelerator=
Line 113: Line 151:
==References==
==References==
<li> [https://indico.cern.ch/event/1034469/contributions/4431744/] "A Novel Scintillator Detector for the Mu2e-II Experiment and a Muon Tomography Probe of the Interior of the Great Pyramid" </li>
<li> [https://indico.cern.ch/event/1034469/contributions/4431744/] "A Novel Scintillator Detector for the Mu2e-II Experiment and a Muon Tomography Probe of the Interior of the Great Pyramid" </li>
=Trigger and Data Acquisition (TDAQ)=


=Sensitivity=
=Sensitivity=
Line 119: Line 160:
=References=
=References=


<li>[https://arxiv.org/pdf/2110.07093.pdf] Muon to positron conversion (2021)</li>
<li>[https://arxiv.org/pdf/2107.02073.pdf] Muon-ion collider for BNL (2021)</li>
<li>[https://arxiv.org/pdf/2107.02073.pdf] Muon-ion collider for BNL (2021)</li>
<li>[https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0_Frank_Porter-106.pdf] Mu2e-II Snowmass 22 Letter of Interest (2020)</li>
<li>[https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0_Frank_Porter-106.pdf] Mu2e-II Snowmass 22 Letter of Interest (2020)</li>

Latest revision as of 21:12, 26 September 2023

Mu2e-II

Contributed paper for Snowmass22

[1]https://arxiv.org/abs/2203.07569

Sample slides based on the Snowmass contributed paper

NUFACT2022 paper

[2]https://lss.fnal.gov/archive/2022/conf/fermilab-conf-22-928-ad.pdf

References

  1. Byrum, K. et al., Mu2e-II: Muon to electron conversion with PIP-II, [1]
  2. Neuffer, D. et ai., A Pion-Production Target for Mu2e-II: Design and Prototype, Phys. Sci. Forum 2023 (NUFACT 2022 paper) [2]

Mu2e

Mu2e public results and material for speakers


Theory

We measure

[math]\displaystyle{ \begin{equation} R_{\mu e} \equiv \frac{\Gamma(\mu^-N(A,Z)\to e^-N(A,Z)}{\Gamma(\mu^-N(A,Z)\to \nu_\mu N(A,Z-1)^*)}. \end{equation} }[/math] In the standard model, this is very small. On aluminum it is estimated to be [math]\displaystyle{ \begin{equation} R(\mu^-\hbox{Al}\to e^- \hbox{Al}) \sim 2\times10^{-52}\frac{\sin^2\theta_{13}}{0.15}. \end{equation} }[/math] [1]


  • Z dependence of µ → e conversion rates for some sample scenarios [3].
  • Tail of the electron spectrum for DIOs and for two [math]\displaystyle{ \mu\to eX }[/math] scenarios [4].

References

[Following references not cited above: [2] [3]]

  1. Marciano, William J. and Mori, Toshinori and Roney, J. Michael, Charged Lepton Flavor Violation Experiments, Annual Review of Nuclear and Particle Science, 58 (2008) 315-341.
  2. Vincenzo Cirigliano, Ryuichiro Kitano, Yasuhiro Okada, and Paula Tuzon, Phys. Rev. D 80, 013002 (2009)
  3. Marciano, William J. and Sanda, A. I., Reaction [math]\displaystyle{ \mu^-+\hbox{Nucleus}\rightarrow e^-+\hbox{Nucleus} }[/math] in Gauge Theories, Phys. Rev. Lett. 38 (1977) 1512-1515.

PIP-II accelerator

  • PIP-II Pozdeyev 7 4MP.png
  • PIP-II Pozdeyev 9 4MP.png
  • PIP-II Pozdeyev 10 4MP.png
  • PIP-II Pozdeyev 15 4MP.png
  • PIP-II Pozdeyev 16 4MP.png
  • PIP-II Pozdeyev 17 MP.png


References

  • PIP-II public web site
  • E. Pozdeyev, Rare Processes and Precision Frontier Town Hall (2020)

    Beamline

    Production target

    • ProductionTargetRotatingRodsWcaption-IPAC214MP.png
    • ProductionTargetDesignsFixedGranular4MP-IPAC21.png
    • ProductionTargetDesignsConveyor4MP-IPAC21.png
    • ComparisonTable4MP-IPAC21.png
    • BallDeformation.png
    • HRScaptioned.png
    • Mu2e-II CERN 052021 VP 6 4MP.png
    • Mu2e-II CERN 052021 VP 7 4MP.png
    • Mu2e-II CERN 052021 VP 8 4MP.png
    • Mu2e-II CERN 052021 VP 9 4MP.png

    References

  • [5] "Pion-production target design for Mu2e-II: status update" 1st Muon Community Meeting (2021)
  • [6] "Early considerations for muon collider targetry at CERN"
  • Production solenoid

    Tracking

    • Slide illustrating the requirement on track resolution for Mu2e-II compared with Mu2e. Note that the resolution has contributions from several sources - the tacker itself, absorber material, and target material. The blue dashed curve on each plot indicates the electron spectrum from muon decays in orbit (DIOs). The red curves show the conversion electron spectrum for the values of [math]\displaystyle{ R_{\mu e} }[/math] indicated in the legends. In more detail: (left) Simulation of the energy distributions of electrons from conversion and the high energy tail of DIO's, for Mu2e. The assumption is [math]\displaystyle{ 6.7\times 10^{17} }[/math] stopped muons and a conversion electron (CE) rate of [math]\displaystyle{ 10^{-16} }[/math]. The electron energies are broadened by energy straggling in the stopping target and the Inner Proton Absorber (IPA), and by energy straggling and multiple scattering in the Tracker; (center) Simulation of the energy distributions of electrons from conversion and the high energy tail of DIO's, for Mu2e-II. The assumption is [math]\displaystyle{ 10^{19} }[/math] stopped muons and a CE rate of [math]\displaystyle{ 10^{-17} }[/math]. The energy resolution is assumed to be the same as that expected for Mu2e. There is now a substantial overlap between the DIO background and the CE signal; (right) Simulation of the energy distributions of electrons from conversion and the high energy tail of DIO's, for Mu2e-II. The assumption is [math]\displaystyle{ 10^{19} }[/math] stopped muons and a CE rate of [math]\displaystyle{ 10^{-17} }[/math]. The energy resolution is assumed to be the two times better than Mu2e (a goal of Mu2e-II). There is now much less overlap between the DIO background and the CE signal, compared to the center plot.
    • AmbroseCPAD Mu2e Tracker 184MP.jpg
    • AmbroseCPAD Mu2e Tracker 19.png
    • AmbroseCPAD Mu2e Tracker 20.png
    • DPF2021 Design and studies for the Mu2e-II tracker 8 4MP.png
    • DPF2021 Design and studies for the Mu2e-II tracker 9 4MP.png
    • DPF2021 Design and studies for the Mu2e-II tracker 10 4MP.png
    • DPF2021 Design and studies for the Mu2e-II tracker 11 4MP.png
    • DPF2021 Design and studies for the Mu2e-II tracker 12 4MP.png
    • DPF2021 Design and studies for the Mu2e-II tracker 13 4MP.png
    • DPF2021 Design and studies for the Mu2e-II tracker 14 4MP.png

    References

  • "Design and studies for the Mu2e-II tracker", DPF 2021 [7]
  • COMET tracker (2020 NIM) [8]
  • COMET tracker (2016 slides) [9]
  • Calorimeter

    • Effect of yttrium doping on suppressing the slow component in BaF[math]\displaystyle{ _2 }[/math]
    • Hitlin CPAD 210318- Page 05MP.png
    • Hitlin CPAD 210318 Page 26 4MP.png
    • Hitlin CPAD 210318 Page 274MP.png
    • Hitlin CPAD 210318 Page 28 4MP.png

    Cosmic Ray Veto

    The Mu2e-II Cosmic Ray Veto will need to cope with roughly a factor 3 higher instantaneous rates from accelerator compared with Mu2e as well as a factor of three higher live time (i.e., cosmic rays), because of the higher duty factor for Mu2e-II compared with Mu2e.

    • Crv seminar dpf 2021 16 4MP.png
    • Crv seminar dpf 2021 17 4MP.png
    • Crv seminar dpf 2021 18 4MP.png

    References

  • [10] "A Novel Scintillator Detector for the Mu2e-II Experiment and a Muon Tomography Probe of the Interior of the Great Pyramid"
  • Trigger and Data Acquisition (TDAQ)

    Sensitivity

    References

  • [11] Muon to positron conversion (2021)
  • [12] Muon-ion collider for BNL (2021)
  • [13] Mu2e-II Snowmass 22 Letter of Interest (2020)
  • [14] 1st muon community meeting (CERN), 20-21 May 2020
  • [15] Mu2e-II theory Snowmass 22 Letter of Interest (2020)
  • [16] COMET Phase-I TDR (2020)
  • [17] Muon colliders (2019)
  • [18] Mu2e-II Expression of Interest (2018)
  • [19] Charged Lepton Flavor Violation Experiments (2008)