Material for speakers
Jump to navigation
Jump to search
Mu2e
Mu2e public results and material for speakers
Theory
- Z dependence of µ → e conversion rates for some sample scenarios [1].
- Tail of the electron spectrum for DIOs and for two [math]\displaystyle{ \mu\to eX }[/math] scenarios [2].
References
PIP-II accelerator
Beamline
Production target
Production solenoid
Tracking
- Slide illustrating the requirement on track resolution for Mu2e-II compared with Mu2e. Note that the resolution has contributions from several sources - the tacker itself, absorber material, and target material. The blue dashed curve on each plot indicates the electron spectrum from muon decays in orbit (DIOs). The red curves show the conversion electron spectrum for the values of [math]\displaystyle{ R_{\mu e} }[/math] indicated in the legends. In more detail: (left) Simulation of the energy distributions of electrons from conversion and the high energy tail of DIO's, for Mu2e. The assumption is [math]\displaystyle{ 6.7\times 10^{17} }[/math] stopped muons and a conversion electron (CE) rate of [math]\displaystyle{ 1\times10^{-16} }[/math]. The electron energies are broadened by energy straggling in the stopping target and the Inner Proton Absorber, and by energy straggling and multiple scattering in the Tracker; (center) Simulation of the energy distributions of electrons from conversion and the high energy tail of DIO's, for Mu2e-II. The assumption is [math]\displaystyle{ 1\times10^{19} }[/math] stopped muons and a CE rate of [math]\displaystyle{ 1\times10^{-17}\lt /math}. The energy resolution is assumed to be the same as that expected for Mu2e. There is now a substantial overlap between the DIO background and the CE signal; (right) Simulation of the energy distributions of electrons from conversion and the high energy tail of DIO's, for Mu2e-II. The assumption is \lt math\gt 1\times10^{19} }[/math] stopped muons and a CE rate of [math]\displaystyle{ 1\times10^{-17}\lt /math}. The energy resolution is assumed to be the two times better than Mu2e (a goal of Mu2e-II). There is now much less overlap between the DIO background and the CE signal, compared to the center plot. ]] \lt /li\gt \lt li style="display: inline-block; vertical-align: top;"\gt [[File:AmbroseCPAD Mu2e Tracker 184MP.jpg|thumb|top]] \lt /li\gt \lt li style="display: inline-block; vertical-align: top;"\gt [[File:AmbroseCPAD Mu2e Tracker 19.png|thumb|top]] \lt /li\gt \lt li style="display: inline-block; vertical-align: top;"\gt [[File:AmbroseCPAD Mu2e Tracker 20.png|thumb|top]] \lt /li\gt \lt li style="display: inline-block; vertical-align: top;"\gt [[File:DPF2021 Design and studies for the Mu2e-II tracker 8 4MP.png|thumb|top]] \lt li style="display: inline-block; vertical-align: top;"\gt [[File:DPF2021 Design and studies for the Mu2e-II tracker 9 4MP.png|thumb|top]] \lt li style="display: inline-block; vertical-align: top;"\gt [[File:DPF2021 Design and studies for the Mu2e-II tracker 10 4MP.png|thumb|top]] \lt /li\gt \lt li style="display: inline-block; vertical-align: top;"\gt [[File:DPF2021 Design and studies for the Mu2e-II tracker 11 4MP.png|thumb|top]] \lt /li\gt \lt li style="display: inline-block; vertical-align: top;"\gt [[File:DPF2021 Design and studies for the Mu2e-II tracker 12 4MP.png|thumb|top]] \lt /li\gt \lt li style="display: inline-block; vertical-align: top;"\gt [[File:DPF2021 Design and studies for the Mu2e-II tracker 13 4MP.png|thumb|top]] \lt /li\gt \lt li style="display: inline-block; vertical-align: top;"\gt [[File:DPF2021 Design and studies for the Mu2e-II tracker 14 4MP.png|thumb|top]] \lt /li\gt \lt /ul\gt ==References== \lt li\gt "Design and studies for the Mu2e-II tracker", DPF 2021 [https://indico.cern.ch/event/1034469/contributions/4431745/] \lt /li\gt \lt li\gt COMET tracker (2020 NIM) [https://www.sciencedirect.com/science/article/abs/pii/S0168900219312446] \lt /li\gt \lt li\gt COMET tracker (2016 slides) [https://indico.cern.ch/event/391665/contributions/1827226/attachments/1229733/1802100/COMET_Straw.pdf] \lt /li\gt =Calorimeter= \lt div\gt \lt ul\gt \lt li style="display: inline-block; vertical-align: top;"\gt [[File:yttriumDoping.png|thumb|top|Effect of yttrium doping on suppressing the slow component in BaF\lt math\gt _2 }[/math]
Cosmic Ray Veto
The Mu2e-II Cosmic Ray Veto will need to cope with roughly a factor 3 higher instantaneous rates from accelerator compared with Mu2e as well as a factor of three higher live time (i.e., cosmic rays), because of the higher duty factor for Mu2e-II compared with Mu2e.